새소식

알고리즘 테스트 ⏲/이코테

[이코테 Python] 최단 경로 알고리즘

  • -
최단 경로 알고리즘 문제
최단 경로 알고리즘
다익스트라 최단 경로 알고리즘

원론적 구현

import sys
input = sys.stdin.readline()
INF = int(1e9) # 무한을 의미하는 값으로 10억 설정

# 노드의 개수, 간선의 개수 입력
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for _ in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트 생성
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보 입력
for _ in range(m):
    a, b, c = map(int, input().split())
    # a노드에서 b노드로 가는 비용이 c라는 의미
    graph[a].append((b, c))

# 방문하지 않은 노드 중에서, 가장 최단거리가 짧은 노드의 번호 반환
def get_smallest_node():
    min_value = INF
    index = 0 # 가장 최단 거리가 짧은 노드 (인덱스)
    for i in range(1, n + 1):
        if distance[i] < min_value and not visited[i]:
            min_value = distance[i]
            index = 1
    return index

def dijkstra(start):
    # 시작 노드에 대해서 초기화
    distance[start] = 0
    visited[start] = True
    for j in graph[start]:
        distance[j[0]] = j[1]
    # 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
    for i in range(n - 1):
        # 현재 최단 거리가 가장 짧은 노드를 꺼내서 방문 처리
        now = get_smallest_node()
        visited[now] = True
        # 현재 노드와 연결된 다른 노드를 확인
        for j in graph[now]:
            cost = distance[now] + j[1]
            # 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[j[0]]:
                distance[j[0]] = cost

dijkstra(start)

# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
    # 도달할 수 없는 경우 무한 출력
    if distance[i] == INF:
        print("INF")
    # 도달할 수 있는 경우 거리 출력
    else:
        print(distance[i])

개선된 구현

import heapq
INF = int(1e9)

n, m = map(int, input())
start = int(input())
graph = [[] for _ in range(n + 1)]
distance = [INF] * (n + 1)

for _ in range(m):
    a, b, c = map(int, input().split())
    graph[a].append((b, c))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 거리는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않는 동안
        # 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접 노드들 확인
        for i in graph[now]:
            cost = dist + i[1] # start에서 now를 거치기까지 비용 + now에서 i까지의 비용
            # 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

dijkstra(start)

# 모든 노드로 가기 위한 최단 거리 출력
for i in range(1, n + 1):
    # 도달할 수 없는 경우, 무한 출력
    if distance[i] == INF:
        print("INFINITY")
    else:
        print(distance[i])

 

플로이드 워셜 알고리즘
INF = int(1e9)

n, m = map(int, input().split()) # 노드 수, 간선 수
# 2차원 리스트를 만들고 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에게서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0
    
# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # a에서 b로 가는 비용은 c
    a, b, c = map(int, input().split())
    graph[a][b] = c

# 점화식에 따라 플로이드 워셜 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 결과 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if graph[a][b] == INF:
            print("INF", end=" ")
        else:
            print(graph[a][b], end=" ")
    print()

 

전보

[문제]

어떤 나라에는 N개의 도시가 있다. 그리고 각 도시는 보내고자 하는 메시지가 있는 경우, 다른 도시로 전보를 보내서 다른 도시로 해당 메시지를 전송할 수 있다. 

 

하지만 X라는 도시에서 Y라는 도시로 전보를 보내고자 한다면, 도시 X에서 Y로 향하는 통로가 설치되어 있어야 한다. 예를 들어 X에서 Y로 향하는 통로는 있지만, Y에서 X로 향하는 통로가 없다면 Y는 X로 메시지를 보낼 수 없다. 또한 통로를 거쳐 메시지를 보낼 때는 일정 시간이 소요된다. 

 

어느 날 C라는 도시에서 위급 상황이 발생했다. 그래서 최대한 많은 도시로 메시지를 보내고자 한다. 메시지는 도시 C에서 출발하여 각 도시 사이에 설치된 통로를 거쳐, 최대한 많이 퍼져나갈 것이다. 

 

각 도시의 번호와 통로가 설치되어 있는 정보가 주어졌을 때, 도시 C에서 보낸 메시지를 받게 되는 도시의 개수는 총 몇 개이며 도시들이 모두 메시지를 받는 데까지 걸리는 시간은 얼마인지 계산하는 프로그램을 작성하시오.

 

[입력]

1. 첫째 줄에 도시의 개수 N, 통로의 개수 M, 메시지를 보내고자 하는 도시 C가 주어진다. (1 <= N <= 30,000, 1 <= M <= 200,000, 1 <= C <= N)

2. 둘째 줄부터 M + 1번째 줄에 걸쳐서 통로에 대한 정보 X, Y, Z가 주어진다. 이는 특정 도시 X에서 다른 특정 도시 Y로 이어지는 통로가 있으며, 메시지가 전달되는 시간이 Z라는 의미다. (1 <= X, Y <= N, 1 <= Z <= 1,000)

 

입력 예시

3 2 1

1 2 4

1 3 2

 

[출력] 

첫째 줄에 도시 C에서 보낸 메시지를 받는 도시의 총 개수와 총 걸리는 시간을 공백으로 구분하여 출력한다.

15

 

출력 예시

2 4

개인 풀이
import heapq
n, m, c = map(int, input().split())
INF = int(1e9)
graph = [[] for _ in range(n + 1)]
distance = [INF] * (n + 1)
distance[0] = 0
for _ in range(m):
    x, y, z = map(int, input().split())
    graph[x].append((y, z))

def dijkstra(start):
    q = []
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q:
        dist, now = heapq.heappop(q)
        if distance[now] < dist:
            continue
        for i in graph[now]:
            cost = dist + i[1]
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))
dijkstra(c)
cnt = -1

for i in range(1, n + 1):
    if distance[i] == INF:
        distance[i] = 0
    else:
        cnt += 1

print(distance)
print(cnt, max(distance))
정답 풀이
import heapq
# import sys
# input = sys.stdin.readline
INF = int(1e9)

def dijkstra(start):
    q = []
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q:
        dist, now = heapq.heappop(q)
        if distance[now] < dist:
            continue
        for i in graph[now]:
            cost = dist + i[1]
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

n, m, start = map(int, input().split())
graph = [[] for _ in range(n + 1)]
distance = [INF] * (n + 1)

for _ in range(m):
    x, y, z = map(int, input().split())
    graph[x].append((y, z))

dijkstra(start)
count = 0
max_distance = 0
for d in distance:
    if d != INF:
        count += 1
        max_distance = max(max_distance, d)
print(count - 1, max_distance)

 

미래 도시

[문제]

미래 도시에는 1번부터 N번까지의 회사가 있는데 특정 회사끼리는 서로 도로를 통해 연결되어 있다. 방문 판매원 A는 현재 1번 회사에 위치해 있으며, X번 회사에 방문해 물건을 판매하고자 한다. 

 

미래 도시에서 특정 회사에 도착하기 위한 방법은 회사끼리 연결되어 있는 도로를 이용하는 방법이 유일하다. 또한 연결된 2개의 회사는 양방향으로 이동할 수 있다. 공중 미래 도시에서 특정 회사와 다른 회사가 도로로 연결되어 있다면, 정확히 1만큼의 시간으로 이동할 수 있다. 

 

또한 오늘 방문 판매원 A는 기대하던 소개팅에도 참석하고자 한다. 소개팅의 상대는 K번 회사에 존재한다. 방문 판매원 A는 X번 회사에 가서 물건을 판매하기 전에 먼저 소개팅 상대의 회사에 찾아가서 함께 커피를 마실 예정이다. 따라서 방문 판매원 A는 1번 회사에서 출발하여 K번 회사를 방문한 뒤에 X번 회사로 가는 것이 목표다. 이때 방문 판매원 A는 가능한 한 빠르게 이동하고자 한다.

 

 방문 판매원이 회사 사이를 이동하게 되는 최소 시간을 계산하는 프로그램을 작성하시오.

 

[입력]

1. 첫째 줄에 전체 회사의 개수 N과 경로의 개수 M이 공백으로 구분되어 차례대로 주어진다. (1 <= N, M <= 100) 

2. 둘째 줄부터 M + 1번째 줄에는 연결된 두 회사의 번호가 공백으로 구분되어 주어진다. 

M + 2번째 줄에는 X와 K가 공백으로 구분되어 차례대로 주어진다. (1 <= K <= 100)

 

입력 예시

5 7

1 2

1 3

1 4

2 4

3 4

3 5

4 5

4 5

 

[출력]

1. 첫째 줄에 방문 판매원 A가 K번 회사를 거쳐 X번 회사로 가는 최소 이동 시간을 출력한다. 

2. 만약 X번 회사에 도달할 수 없다면 -1을 출력한다.

 

출력 예시

3

 

개인 풀이
n, m = map(int, input().split())
INF = int(1e9)
graph = [[INF] * (n + 1) for _ in range(n + 1)]
for i in range(m):
    a, b = map(int, input().split())
    graph[a][b], graph[b][a] = 1, 1
for i in range(1, n + 1):
    graph[i][i] = 0
x, k = map(int, input().split())
for p in range(1, n + 1):
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            graph[i][j] = min(graph[i][j], graph[i][p] + graph[p][j])

print(graph[1][k] + graph[k][x]) if graph[1][k] + graph[k][x] < INF else -1
정답 풀이
INF = int(1e9)
n, m = map(int, input().split())
graph = [[INF] * (n + 1) for _ in range(n + 1)]

for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] == 0
for _ in range(m):
    a, b = map(int, input().split())
    graph[a][b] = 1
    graph[b][a] = 1

x, k = map(int, input().split())
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

distance = graph[1][k] + graph[k][x]
if distance >= INF:
    print("-1")
else:
    print(distance)

 

 

 

※ 문제 출처 : 이것이 취업을 위한 코딩 테스트다 with 파이썬 (나동빈 저).

※ 개인 풀이는 오류가 있을 수 있음.

Contents

포스팅 주소를 복사했습니다

이 글이 도움이 되었다면 공감 부탁드립니다.